Publisher
Springer Nature Singapore
Reference14 articles.
1. Warnakulasuriya, S.: Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45, 309–316 (2009). https://doi.org/10.1016/j.oraloncology.2008.06.002
2. Hung, L.C., Kung, P.T., Lung, C.H., Tsai, M.H., Liu, S.A., Chiu, L.T., Huang, K.H., Tsai, W.C.: Assessment of the risk of oral cancer incidence in a high-risk population and establishment of a predictive model for oral cancer incidence using a population-based cohort in Taiwan. Int. J. Environ. Res. Public Health. 17 (2020). https://doi.org/10.3390/ijerph17020665
3. Aubreville, M., Knipfer, C., Oetter, N., Jaremenko, C., Rodner, E., Denzler, J., Bohr, C., Neumann, H., Stelzle, F., Maier, A.: Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep learning. Sci. Rep. 7, 1–10 (2017). https://doi.org/10.1038/s41598-017-12320-8
4. Awais, M., Ghayvat, H., Krishnan Pandarathodiyil, A., Nabillah Ghani, W.M., Ramanathan, A., Pandya, S., Walter, N., Naufal Saad, M., Zain, R.B., Faye, I.: Healthcare professional in the loop (HPIL): classification of standard and oral cancer-causing anomalous regions of oral cavity using textural analysis technique in autofluorescence imaging. Sensors (Switzerland). 20, 1–25 (2020). https://doi.org/10.3390/s20205780
5. Palaskar, R., Vyas, R., Khedekar, V., Palaskar, S., Sahu, P.: Transfer learning for oral cancer detection using microscopic images. arXiv Prepr. arXiv2011.11610 (2020)