1. Ahmad, M. W. et al. (2017). Random forests and artificial neural network for predicting daylight illuminance and energy consumption bre centre for sustainable engineering, School of Engineering, AhmadM3@Cardiff.ac.uk ; 2 HippolyteJ@Cardiff.ac.uk ; Related work. Building Simulation (May), pp. 1–7.
2. Al-Masrani, S. M., & Al-Obaidi, K. M. (2019). Dynamic shading systems: A review of design parameters, platforms and evaluation strategies. Automation in Construction, 102, 195–216. https://doi.org/10.1016/j.autcon.2019.01.014
3. Breiman, L. 2019. Random forests, pp. 1–122. doi: https://doi.org/10.1201/9780367816377-11.
4. Chakraborty, D., & Elzarka, H. (2019). Advanced machine learning techniques for building performance simulation: A comparative analysis. Journal of Building Performance Simulation, 12(2), 193–207. https://doi.org/10.1080/19401493.2018.1498538
5. Gadelhak, M., & Lang, W. (2016). Optimization of office building façade to enhance daylighting , thermal comfort and energy use intensity. BSO 2016 Building Simulation & Optimization (January 2017), pp. 1116–1124.