A Novel Approach for Improving Accuracy for Distributed Storage Networks

Author:

Lu Liu,Yuanyuan Ke,Yong Yuan

Abstract

AbstractWith the development of storage technology and Internet technology, cloud storage continues to make its impact. Scalability, reliability, and lowered costs have made cloud storage widely used with success in businesses and individuals. The advent of the blockchain has brought some changes. As the incentive layer for IPFS, Filecoin allows storage resources to become tradable, greatly extending storage capacity. However, the process of testing the integrity of data still needs constant improvement. In this chapter, we propose a new data audit proof, in which nodes continuously upload hashed data that has been added to random numbers, and the smart contract will compare the result to verify the integrity of the data. Meanwhile, data owner could calculate and then challenge to verify the data integrity. There are audit miners responsible for regulating the behavior of miners and the protection of users’ data, and audit miners in a state of semi-participation. It is demonstrated later in the chapter that this proof is accurate enough and resistant to attacks.

Publisher

Springer Nature Singapore

Reference17 articles.

1. Bai, L. H., Xue, J. T., Xu, C. X., et al. (2018). DStore: A distributed cloud storage system based on smart contracts and blockchain. In International Conference on Algorithms and Architectures for Parallel Processing. Springer.

2. Benet, J. (2014). IPFS—Content addressed, versioned. P2P File System.

3. Douceur, J. R. (2002). The sybil attack. Springer.

4. Juels, A., Kaliski, B. S., PORs, J. (2007). Proofs of retrievability for large files. In Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS (Vol. 07, pp. 584–597). ACM.

5. Li, J., Wu, J., Jiang, G., et al. (2020). Blockchain-based public auditing for big data in cloud storage. Information Processing & Management, 57(6), 102382.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. nPPoS: Non-interactive Practical Proof-of-Storage for Blockchain;Blockchain: Research and Applications;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3