1. Acar, D.A.E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P., Saligrama, V.: Federated learning based on dynamic regularization. In: International Conference on Learning Representations, December 2021
2. Dinh, C.T., Vu, T.T., Tran, N.H., Dao, M.N., Zhang, H.: FedU: a unified framework for federated multi-task learning with Laplacian regularization, February 2021
3. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 3557–3568. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1126–1135. PMLR, 06–11 August 2017. http://proceedings.mlr.press/v70/finn17a/finn17a.pdf
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, December 2015