An Improved Deep Neural Network-Based Predictive Model for Traffic Accident’s Severity Prediction
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-7952-0_17
Reference22 articles.
1. Park JH, An YJ, Yoo KH, Na MG (2021) Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks. Nucl Eng Technol 7(11):1–9. https://doi.org/10.1016/j.net.2021.01.040
2. Zhang X, Huang C, Chen Y (2020) Method of highway risk assessment and accident quantity prediction based on multi-source heterogeneous data and deep neural network. In: Resilience and sustainable transportation systems. American Society of Civil Engineers, Reston, VA, pp 118–125. https://doi.org/10.1061/9780784482902.014
3. Prasath (2020) Bounded memory-based frequent pattern growth approach with deep neural network and decision tree for road accident prediction. Indian J Comput Sci Eng 11(5):623–633. https://doi.org/10.21817/indjcse/2020/v11i5/201105189
4. Singh G, Pal M, Yadav Y, Singla T (2020) Deep neural network-based predictive modeling of road accidents. Neural Comput Appl 32:12417–12426. https://doi.org/10.1007/s00521-019-04695-8
5. Selvathi D (2020) FPGA based human fatigue and drowsiness detection system using deep neural network for vehicle drivers in road accident avoidance system. In: Human, behaviour analysis using intelligent systems, vol 6. Springer, Cham, pp 69–91. https://doi.org/10.1007/978-3-030-35139-7_4
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimising air quality prediction in smart cities with hybrid particle swarm optimization‐long‐short term memory‐recurrent neural network model;IET Smart Cities;2024-05-20
2. Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach;Knowledge-Based Systems;2024-02
3. A smart waste classification model using hybrid CNN-LSTM with transfer learning for sustainable environment;Multimedia Tools and Applications;2023-09-13
4. A Hybrid Deep Learning Model Using CNN and K-Mean Clustering for Energy Efficient Modelling in Mobile EdgeIoT;Electronics;2023-03-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3