Author:
Liang Dengzhe,Li Binglin,Li Hongxi,Jiang Yuncheng
Publisher
Springer Nature Singapore
Reference24 articles.
1. Chang, Y., Chen, C., Hu, W., Zheng, Z., Zhou, X., Chen, S.: Megnn: meta-path extracted graph neural network for heterogeneous graph representation learning. Knowl. Based Syst. 235, 107611 (2022)
2. Chen, Y., et al.: Semi-supervised heterogeneous graph learning with multi-level data augmentation. arXiv preprint arXiv:2212.00024 (2022)
3. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of The Web Conference 2020, pp. 2331–2341 (2020)
4. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
5. Li, J., Peng, H., Cao, Y.: Higher-order attribute-enhancing heterogeneous graph neural networks. IEEE Trans. Knowl. Data Eng. 35(1), 560–574 (2021)