Publisher
Springer Nature Singapore
Reference29 articles.
1. An, Y., Zhang, K., Chai, Y., Liu, Q., Huang, X.: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions. Expert Syst. Appl. 212, 118802 (2023)
2. Feng, K., Ji, J., Ni, Q., Beer, M.: A review of vibration-based gear wear monitoring and prediction techniques. Mech. Syst. Signal Process. 182, 109605 (2023)
3. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)
4. Gao, Q., Huang, T., Zhao, K., Shao, H., Jin, B.: Multi-source weighted source-free domain transfer method for rotating machinery fault diagnosis. Expert Syst. Appl. 237, 121585 (2024)
5. Han, T., Gong, X., Feng, F., Zhang, J., Sun, Z., Zhang, Y.: Privacy-preserving multi-source domain adaptation for medical data. IEEE J. Biomed. Health Inform. 27(2), 842–853 (2022)