Author:
Sreegeethi Devaguptam,Gorti Sai Srivatsa,Leela Akshaya T.,Sowmya Kamath S.
Publisher
Springer Nature Singapore
Reference20 articles.
1. Yang, W., & Zhang, S. (2021). Research on bootstrapping algorithm for health insurance data fraud detection based on decision tree. In 2021 7th IEEE international conference on big data security on cloud (pp. 57–62). NY, USA. https://doi.org/10.1109/BigDataSecurityHPSCIDS52275.2021.00021.G.
2. Healthcare Provider Fraud Detection Analysis Dataset. https://www.kaggle.com/datasets/rohitrox/healthcare-provider-fraud-detection-analysis?select=Train_Inpatientdata-1542865627584.csv
3. Sun, C., Li, Q., Li, H., Shi, Y., Zhang, S., & Guo, W. (2019). Patient cluster divergence based healthcare insurance fraudster detection. IEEE Access, 7, 14162–14170. https://doi.org/10.1109/ACCESS.2018.2886680
4. Badriyah, T., Rahmaniah, L., & Syarif, I. (2018). Nearest neighbour and statistics method based for detecting fraud in auto insurance. In ICAE (pp. 1–5). Indonesia, Batam.
5. Muller, D., & Te, Y.-F. (2017). Insurance premium optimization using motor insurance policies-A business growth classification approach. In Proceedings on IEEE international conference on big data (big data) (pp. 4154–4158).