Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from, II
Publisher
Springer Singapore
Reference20 articles.
1. M.F. Atiyah, I.G. Macdonald, An Introduction to Commutative Algebra (Addison-Wesley, Reading, 1969)
2. D.E. Dobbs, Every commutative ring has a minimal ring extension. Comm. Algebra 34, 3875–3881 (2006)
3. D.E. Dobbs, On the commutative rings with at most two proper subrings. Int. J. Math. Math. Sci. 2016, Article ID 6912360, 13 (2016). https://doi.org/10.1155/2016/6912360
4. D.E. Dobbs, Certain towers of ramified minimal ring extensions of commutative rings. Comm. Algebra 46(8), 3461–3495 (2018). https://doi.org/10.1080/00927872.2017.1412446
5. D.E. Dobbs, Is $$A \times B$$ isomorphic to $$B \times A$$? Far East J. Math. Sci. 108(2), 217–228 (2018). https://doi.org/10.17654/MS108020217