Author:
Li Ning,Wu Xiang-hong,Li Xin,Wang Zhi-ping,Wang Yue-zhong,Zhao Li-ao,Ren Liang,Wang Hong-liang,Tian Hong-yu,Ren Shu-hang,Jiang Si-rui
Publisher
Springer Nature Singapore
Reference18 articles.
1. Rahmanifard, H., Gates, I., Asl, A.S.: Comparison of machine learning and statistical predictive models for production time series forecasting in tight oil reservoirs. In: SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA (2022). https://doi.org/10.15530/urtec-2022-3703284
2. Zhang, Y., Zheng, Y., Sun, S., et al.: Data driven production prediction of tight sandstone after compression in Changqing Oilfield. Energy Environ. Protect. 43(10), 96–101127 (2021)
3. Tao, L., et al.: A new productivity prediction hybrid model for multi fractured horizontal wells in tight oil reservoirs. In: SPE/IATMI Asia Pacific Oil&Gas Conference and Exhibition, Virtual (2021). https://doi.org/10.2118/205620-MS
4. Al Ali Hussain Al Ali, Z., Horne, R.: Meta learning using deep N-BEATS model for production forecasting with limited history. In: Gas&Oil Technology Showcase and Conference held in Dubai, UAE (2023)
5. Understanding LSTM Networks. https://web.stanford.edu/class/cs379c/archive/2018/