Emotion Detection Framework for Twitter Data Using Supervised Classifiers

Author:

Suhasini Matla,Srinivasu Badugu

Publisher

Springer Singapore

Reference34 articles.

1. Roberts, K., Roach, M.A., Johnson, J., Guthrie, J., Harabagiu, S.M.: EmpaTweet: annotating and detecting emotions on Twitter. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC), ROBERTS12.201.L12-1059 (2012)

2. Hasan, M., Rundensteiner, E., Agu, E.: Emotex: detecting emotions in Twitter messages. Ase BigData/SocialCom/CyberSecurity Conference, 27–31 May 2014

3. Suhasini, M., Badugu, S.: Two step approach for emotion detection on Twitter data. Int. J. Comput. Appl. (0975 – 8887) 179(53) (2018)

4. Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: International AAAI Conference on Weblogs and Social Media (ICWSM’11) (2011)

5. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in Twitter events. J. Am. Soc. Tavel Model. Simul. Design. (2007)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the Performance of AI Algorithms in Text-Based Emotion Detection for Conversational Agents;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-08-08

2. A review on emotion detection by using deep learning techniques;Artificial Intelligence Review;2024-07-11

3. Meta-Learning in Textual Sentiment and Emotion Analysis: A Comprehensive Review;2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon);2024-04-25

4. Neural Networks and Emotions: A Deep Learning Perspective;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

5. Emotion Detection from Real-Life Situations Based on Journal Entries Using Machine Learning and Deep Learning Techniques;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3