Using Machine Learning Based CNN Architectural Models for Breast Ductal Carcinoma Recognition

Author:

Vats Prashant,Batra Reenu,Doja Faraz,Phogat Manu,Gupta Piyush Kumar,Biswas Siddhartha Sankar

Publisher

Springer Nature Singapore

Reference10 articles.

1. Yao, X., Liu, Y.: Neural networks for breast cancer diagnosis. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation-CEC99 (1999)

2. Khalid, A., Noureldien, A.: Determining the efficient structure of feed forward neural network to classify breast cancer dataset. (IJACSA) Int. J. Adv. Comput. Sci. Appl. (2013)

3. Kiyan, T., Yildirim, T.: Breast cancer diagnosis using statistical neural networks. J. Electr. Electron. Eng. (2003)

4. Santhosh Baboo, Sasikala, S.: A survey on data mining techniques in gene selection and cancer classification. Int. J. Comput. Sci. Inf. Technol. (2010)

5. Bourdes, V., Stephane, B.: Comparison of artificial neural network with logistic regression as classification models for variable selection for prediction of breast cancer patient outcomes. Adv. Artif. Neural Syst. (2010)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Intelligent Governance: The Role of AI in Policymaking and Decision Support for E-Governance;Smart Innovation, Systems and Technologies;2024

2. Artificial Intelligence, Smart Contracts, and the Groundbreaking Potential of Blockchain technology: Unlock the Next Generation of Innovation;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01

3. A Comparative Analysis of LSB & DCT Based Steganographic Techniques: Confidentiality, Contemporary State, and Future Challenges;2023 6th International Conference on Contemporary Computing and Informatics (IC3I);2023-09-14

4. Development and Evaluation of an Artificial Intelligence-Based System for Pancreatic Cancer Detection and Diagnosis;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3