Author:
Pundir Pankaj,Aggarwal Shivam,Deshmukh Maroti
Reference18 articles.
1. World Health Organization: Disease burden of malaria.
http://www.who.int/mediacentre/factsheets/fs094/en/
2. Das, D.K., et al.: Machine learning approach for automated screening of malaria parasite using light microscopic images. J. Micron 45, 97–106 (2013)
3. Shawe-Taylor, J., Cristianini, N.: Support vector machines. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, pp. 93–112 (2000)
4. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22 (2001)
5. Tek, F.B., Dempster, A.G., Kale, I.: Parasite detection and identification for automated thin blood film malaria diagnosis. J. Comput. Vis. Image Underst. 114(1), 21–32 (2010)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Malaria Detection Using Convolutional Neural Networks: A Comparative Study;2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA);2023-10-10
2. Machine Learning Classifiers for Symptom-Based Malaria Prediction;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18
3. Malaria Parasite Diagnosis Using Computational Techniques: A Comprehensive Review;Journal of Physics: Conference Series;2021-11-01