A Walk Through Various Paradigms for Fake News Detection on Social Media
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-15-8767-2_16
Reference24 articles.
1. Shu K, Bernard HR, Liu H (2019) Studying fake news via network analysis: detection and mitigation. In: Emerging research challenges and opportunities in computational social network analysis and mining. Springer, Cham, pp 43–65
2. Ahmed H, Traore I, Saad S (2017) Detection of online fake news using N-gram analysis and machine learning techniques. In: International conference on intelligent, secure, and dependable systems in distributed and cloud environments. Springer, Cham, pp 127–138
3. Shu K, Sliva A, Wang S, Tang J, Liu H (2017) Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor Newslett 19(1):22–36
4. Tacchini E, Ballarin G, Della Vedova ML, Moret S, de Alfaro L (2017) Some like it hoax: automated fake news detection in social networks. arXiv:1704.07506
5. Tschiatschek S, Singla A, Gomez Rodriguez M, Merchant A, Krause A (2018) Fake news detection in social networks via crowd signals. In: Companion proceedings of the the web conference 2018, pp 517–524
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative Examination of Fake News Recognition Using an Ensemble of Numerous Machine Learning Algorithms;2023 6th International Conference on Information Systems and Computer Networks (ISCON);2023-03-03
2. Convolutional Neural Networks- Bidirectional Long Short Term Memory Based Fake Review Classification;2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS);2022-05-25
3. A Comparative Analysis on Fake News Detection Methods;Proceedings of the 2nd International Conference on Computing Advancements;2022-03-10
4. Fake News Detection Through ML and Deep Learning Approaches for Better Accuracy;Lecture Notes in Networks and Systems;2022
5. Fuzzy artificial bee colony‐based CNN‐LSTM and semantic feature for fake product review classification;Concurrency and Computation: Practice and Experience;2021-08-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3