Covariance Features Improve Low-Resource Reservoir Computing Performance in Multivariate Time Series Classification
Author:
Lawrie SofíaORCID, Moreno-Bote RubénORCID, Gilson MatthieuORCID
Publisher
Springer Singapore
Reference46 articles.
1. Abreu Araujo, F., Riou, M., Torrejon, J., Tsunegi, S., Querlioz, D., Yakushiji, K., Fukushima, A., Kubota, H., Yuasa, S., Stiles, M.D., Grollier, J.: Role of non-linear data processing on speech recognition task in the framework of reservoir computing. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-019-56991-x 2. Aceituno, P.V., Yan, G., Liu, Y.Y.: Tailoring echo state networks for optimal learning. iScience 23(9), 101440 (2020). https://doi.org/10.1016/j.isci.2020.101440, https://doi.org/10.1016/j.isci.2020.101440 3. Aimone, J.B.: A roadmap for reaching the potential of brain-derived computing. Adv. Intell. Syst. 3(1) (2021). https://doi.org/10.1002/aisy.202000191 4. Alalshekmubarak, A., Smith, L.S.: On improving the classification capability of reservoir computing for Arabic speech recognition. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8681 LNCS, pp. 225–232 (2014). https://doi.org/10.1007/978-3-319-11179-7_29 5. Aswolinskiy, W., Reinhart, R.F., Steil, J.: Time series classification in reservoir- and model-space. Neu. Process. Lett. 48(2), 789–809 (2018). https://doi.org/10.1007/s11063-017-9765-5
|
|