1. National Aeronautics and Space Administration (NASA). [online] https://earthdata.nasa.gov/learn/remote-sensing. Accessed 19 June 2021
2. Mkhabela, M.S., Bullock, P., Raj, S., Wang, S., Yang, Y.: Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 151(3), 385–393 (2011)
3. Douglas, K.B., Mark, A.F.: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 173, 74–84 (2013)
4. Adisa, O.M., Botai, J.O., Adeola, A.M., Hassen, A., Botai, C.M., Darkey, D., Tesfamariam, E.: Application of artificial neural network for predicting maize production in South Africa. Sustainability 11(4), 1–17 (2019)
5. Wolanin, A., Mateo-García, G., Camps-Valls, G., Gómez-Chova, L., Meroni, M., Duveiller, G., Liangzhi, Y., Guanter, L.: Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. IOP Publishing 15(2), 1–12 (2020)