Publisher
Springer Nature Singapore
Reference61 articles.
1. de Amorim, F., Rick, J., Lohmann, G., & Wiltshire, K. H. (2021). Evaluation of machine learning predictions of a highly resolved time series of chlorophyll-a concentration. Applied Sciences, 11, 7208.https://doi.org/10.3390/app11167208
2. Aparna, S. G., D’Souza, S., & Arjun, N. B. (2018). Prediction of daily sea surface temperature using artificial neural networks. International Journal of Remote Sensing, 39, 4214–4231. https://doi.org/10.1080/01431161.2018.1454623
3. Barnston, A. G., & Smith, T. M. (1996). Specification and prediction of global surface temperature and precipitation from Global SST using CCA. Journal of Climate, 9, 2660–2697. https://doi.org/10.1175/1520-0442(1996)009%3c2660:sapogs%3e2.0.co;2
4. Behera, N., Swain, D., & Sil, S. (2020). Effect of Antarctic sea ice on chlorophyll concentration in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 178, 104853. https://doi.org/10.1016/j.dsr2.2020.104853
5. Bogen, K. T., Jones, E. D., & Fischer, L. E. (2011). Hurricane intensity, sea surface temperature, and stochastic variation. Recent Hurricane Research—Climate, Dynamics, and Societal Impacts, 103–115