Comparative Study of Machine Learning Techniques to Forecast Short-Term Wind Power
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-19-3311-0_46
Reference33 articles.
1. Habib A, Abbassi R, Aristizábal AJ, Abbassi A (2020) Forecasting model for wind power integrating least squares support vector machine, singular spectrum analysis, deep belief network, and locality-sensitive hashing. Wind Energy 23(2):235–257
2. Jørgensen KL, Shaker HR (2020) Wind power forecasting using machine learning: state of the art, trends and challenges. In: 2020 IEEE 8th International conference on smart energy grid engineering (SEGE). IEEE, pp 44–50
3. Wang S, Li B, Li G, Yao B, Wu J (2021) Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration. Appl Energy 292:116851
4. Lu P, Ye L, Zhao Y, Dai B, Pei M, Tang Y (2021) Review of meta-heuristic algorithms for wind power prediction: methodologies, applications and challenges. Appl Energy 301:117446
5. Wang L, Tao R, Hu H, Zeng YR (2021) Effective wind power prediction using novel deep learning network: stacked independently recurrent autoencoder. Renew Energy 164:642–655
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3