1. Abulaish, M., Sah, A.K.: A text data augmentation approach for improving the performance of CNN. In: 11th International Conference on COMSNET, Bangalore, India, pp. 625–630 (2019)
2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the Conference of the North American Chapter of the ACL: Human Language Technologies, Minnesota, pp. 4171–4186 (2019)
3. Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. PR Lett. 30(1), 27–38 (2009)
4. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of the 25th Int’l Conference on WWW, p. 507–517 (2016)
5. Kobayashi, S.: Contextual augmentation: data augmentation by words with paradigmatic relations. In: Proceedings of the Conference of the North American Chapter of the ACL-HLT, Louisiana, pp. 452–457 (2018)