1. Adhikari, A., Ram, A., Tang, R., Lin, J.: Docbert: bert for document classification. arXiv preprint arXiv:1904.08398 (2019)
2. Chalkidis, I., Fergadiotis, M., Kotitsas, S., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: An empirical study on large-scale multi-label text classification including few and zero-shot labels. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, 16–20 November 2020, pp. 7503–7515. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.607
3. Chang, W.C., Yu, H.F., Zhong, K., Yang, Y., Dhillon, I.: X-bert: extreme multi-label text classification using bidirectional encoder representations from transformers. In: Proceedings of NeurIPS Science Meets Engineering of Deep Learning Workshop (2019)
4. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5177–5186 (2019)
5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)