TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3

Author:

Tochigi Eita,Miao Bin,Kondo Shun,Shibata Naoya,Ikuhara Yuichi

Abstract

AbstractAlumina (α-Al2O3) is one of the representative structural ceramics. To understand its mechanical responses, the lattice defect behavior of alumina has been investigated by transmission electron microscopy (TEM) for many years. In this report, we review our recent research progress on TEM structural analysis of lattice defects in alumina. In the first half, the core atomic structure and dissociation reaction of b = $$1/3<11\bar{2}0>$$ 1 / 3 < 11 2 ¯ 0 > , $$<1\bar{1}00>$$ < 1 1 ¯ 00 > , and $$1/3<\bar{1}101>$$ 1 / 3 < 1 ¯ 101 > dislocations formed in low-angle grain boundaries are investigated by atomic-resolution TEM observations. Based on experimental results, the slip deformation behavior associated with those dislocations is discussed. In the second half, the formation of $$1/3<11\bar{2}0>$$ 1 / 3 < 11 2 ¯ 0 > dislocations and fracture of Zr-doped ∑13 grain boundary of alumina are observed by in situ TEM nanoindentation. Furthermore, these indented samples were observed by atomic-resolution scanning TEM. The mechanisms of the deformation and fracture phenomena are discussed in detail.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Nature Singapore

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3