Author:
Sihag Vikas,Prakash Surya,Choudhary Gaurav,Dragoni Nicola,You Ilsun
Publisher
Springer Nature Singapore
Reference31 articles.
1. Abuthawabeh M, Mahmoud K (2020) Enhanced android malware detection and family classification using conversation-level network traffic features. Int Arab J Inf Technol 17:607–614
2. Alzaylaee MK, Yerima SY, Sezer S (2020) Dl-droid: Deep learning based android malware detection using real devices. Comput Secur 89:101663
3. Bedford A, Garvin S, Desharnais J, Tawbi N, Ajakan H, Audet F, Lebel B (2016)Andrana: quick and accurate malware detection for android. In: International symposium on foundations and practice of security. Springer, pp 20–35
4. Bhuyan MH, Bhattacharyya DK, Kalita JK (2013) Network anomaly detection: methods, systems and tools. IEEE Commun Surv Tutor 16(1):303–336
5. Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile devices, pp 15–26
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Image-Based Malware Classification: A Systematic Literature Review;2023 IEEE International Conference on Cryptography, Informatics, and Cybersecurity (ICoCICs);2023-08-22
2. DyBAnd: Dynamic Behavior Based Android Malware Detection;Communications in Computer and Information Science;2023