1. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-35289-825
2. Cao, Y., Gu, Q.: Generalization bounds of stochastic gradient descent for wide and deep neural networks. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)
3. Cheridito, P., Jentzen, A., Rossmannek, F.: Nonconvergence of stochastic gradient descent in the training of deep neural networks. J. Complex. 64, 101540 (2021)
4. Defazio, A.: A simple practical accelerated method for finite sums. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 770–778. IEEE, June 2016