Author:
Gaikwad Kunal,Berardinelli Nabeela,Qazi Nadeem
Publisher
Springer Nature Singapore
Reference24 articles.
1. Beeharry, Y., Tsokizep Fokone, R.: Hybrid approach using machine learning algorithms for customers’ churn prediction in the telecommunications industry. Concurr. Comput. Pract. Exp. 34(4) (2022)
2. Bekkar, M., Djemaa, H.K., Alitouche, T.A.: Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng. Appl. 3(10) (2013)
3. De, S., Prabu, P., Paulose, J.: Effective ml techniques to predict customer churn. In: 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 895–902 (2021)
4. Effendy, V., Baizal, Z.A.: Handling imbalanced data in customer churn prediction using combined sampling and weighted random forest. In: 2014 2nd International Conference on Information and Communication Technology (ICoICT), pp. 325–330 (2014)
5. Fujo, S.W., Subramanian, S., Khder, M.A.: Customer churn prediction in telecommunication industry using deep learning. Inf. Sci. Lett. 11(1), 24 (2022)