Publisher
Springer Nature Singapore
Reference23 articles.
1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. lect. IE 2(1), 1–18 (2015)
2. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)
3. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. arXiv preprint arXiv:1511.06432 (2015)
4. Hagemann, T., Katsarou, K.: Reconstruction-based anomaly detection for the cloud: a comparison on the yahoo! webscope S5 dataset. In: Proceedings of the 2020 4th International Conference on Cloud and Big Data Computing, pp. 68–75. ICCBDC 2020, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3416921.3416934
5. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)