Publisher
Springer Nature Singapore
Reference20 articles.
1. Hoshi, Y., Park, D., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3, 1544–1551 (2018)
2. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
3. Wu, B., et al.: Decompose auto-transformer time series anomaly detection for network management. Electronics 12(2), 354 (2023)
4. Cleveland, R.B., et al.: STL: a seasonality -trend decomposition. J. Off. Stat 6(1), 3–73 (1990)
5. Su, Y., et al.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)