1. Huang, W., Li, T., Wang, D., Du, S., Zhang, J., Huang, T.: Fairness and accuracy in horizontal federated learning. Inform. Sci. 589, 170–185 (2022)
2. Wang, X., Chen, W., Xia, J., Wen, Z., Zhu, R., Schreck, T.: HetVis: a visual analysis approach for identifying data heterogeneity in horizontal federated learning. IEEE Trans. Vis. Comput. Graph. 29, 310–319 (2022)
3. Allaart, C.G., Keyser, B., Bal, H., Van Halteren, A.: Vertical split learning-an exploration of predictive performance in medical and other use cases. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)
4. He, Y., et al.: Backdoor attack against split neural network-based vertical federated learning. IEEE Trans. Inform. Forensics Secur. 19, 748–763 (2024)
5. Fu, C., et al.: Label inference attacks against vertical federated learning. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 1397–1414 (2022)