The Bradley–Terry Regression Trunk approach for Modeling Preference Data with Small Trees

Author:

Baldassarre Alessio,Dusseldorp Elise,D’Ambrosio AntonioORCID,Rooij Mark de,Conversano Claudio

Abstract

AbstractThis paper introduces the Bradley–Terry regression trunk model, a novel probabilistic approach for the analysis of preference data expressed through paired comparison rankings. In some cases, it may be reasonable to assume that the preferences expressed by individuals depend on their characteristics. Within the framework of tree-based partitioning, we specify a tree-based model estimating the joint effects of subject-specific covariates over and above their main effects. We, therefore, combine a tree-based model and the log-linear Bradley-Terry model using the outcome of the comparisons as response variable. The proposed model provides a solution to discover interaction effects when no a-priori hypotheses are available. It produces a small tree, called trunk, that represents a fair compromise between a simple interpretation of the interaction effects and an easy to read partition of judges based on their characteristics and the preferences they have expressed. We present an application on a real dataset following two different approaches, and a simulation study to test the model’s performance. Simulations showed that the quality of the model performance increases when the number of rankings and objects increases. In addition, the performance is considerably amplified when the judges’ characteristics have a high impact on their choices.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3