Abstract
AbstractIt is shown that the psychometric test reliability, based on any true-score model with randomly sampled items and uncorrelated errors, converges to 1 as the test length goes to infinity, with probability 1, assuming some general regularity conditions. The asymptotic rate of convergence is given by the Spearman–Brown formula, and for this it is not needed that the items are parallel, or latent unidimensional, or even finite dimensional. Simulations with the 2-parameter logistic item response theory model reveal that the reliability of short multidimensional tests can be positively biased, meaning that applying the Spearman–Brown formula in these cases would lead to overprediction of the reliability that results from lengthening a test. However, test constructors of short tests generally aim for short tests that measure just one attribute, so that the bias problem may have little practical relevance. For short unidimensional tests under the 2-parameter logistic model reliability is almost unbiased, meaning that application of the Spearman–Brown formula in these cases of greater practical utility leads to predictions that are approximately unbiased.
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. Brooks/Cole.
2. Billingsley, P. (1986). Probability and measure. Wiley.
3. Brown, W. (1910). Some experimental results in the correlation of mental abilities. British Journal of Psychology, 3, 296–322. https://doi.org/10.1111/j.2044-8295.1910.tb00207.x
4. Clayson, P. E., Carbine, K. A., Baldwin, S. A., Olsen, J. A., & Larson, M. J. (2021). Using generalizability theory and the ERP Reliability Analysis (ERA) Toolbox for assessing test-retest reliability of ERP scores part 1: Algorithms, framework, and implementation. International Journal of Psychophysiology, 166, 174–187. https://doi.org/10.1016/j.ijpsycho.2021.01.006
5. Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioural measurements: Theory of generalizability for scores and profiles. Wiley.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献