Ignoring Non-ignorable Missingness

Author:

Rabe-Hesketh SophiaORCID,Skrondal AndersORCID

Abstract

AbstractThe classical missing at random (MAR) assumption, as defined by Rubin (Biometrika 63:581–592, 1976), is often not required for valid inference ignoring the missingness process. Neither are other assumptions sometimes believed to be necessary that result from misunderstandings of MAR. We discuss three strategies that allow us to use standard estimators (i.e., ignore missingness) in cases where missingness is usually considered to be non-ignorable: (1) conditioning on variables, (2) discarding more data, and (3) being protective of parameters.

Funder

Norges Forskningsrad

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Psychology

Reference43 articles.

1. Allison, P. D. (1987). Estimation of linear models with incomplete data. In C. C. Clogg (Ed.), Sociological methodology 1987 (pp. 71–103). Washington, DC: American Sociological Association.

2. Allison, P. D. (2000). Multiple imputation for missing data: A cautionary tale. Sociological Methods & Research, 28, 301–309.

3. Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage.

4. Anderson, T. W. (1957). Maximum likelihood estimates for the multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200–203.

5. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243–277). Mahwah, NJ: Erlbaum.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multidimensional Perspective to Data Preprocessing for Model Cognition Verity;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-05-14

2. A critical evaluation of ultrasensitive single-cell proteomics strategies;Analytical and Bioanalytical Chemistry;2024-02-15

3. Diagnosing and Handling Common Violations of Missing at Random;Psychometrika;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3