Goodman and Kruskal’s Gamma Coefficient for Ordinalized Bivariate Normal Distributions

Author:

Barbiero AlessandroORCID,Hitaj AsmerildaORCID

Abstract

AbstractWe consider a bivariate normal distribution with linear correlation $$\rho $$ ρ whose random components are discretized according to two assigned sets of thresholds. On the resulting bivariate ordinal random variable, one can compute Goodman and Kruskal’s gamma coefficient, $$\gamma $$ γ , which is a common measure of ordinal association. Given the known analytical monotonic relationship between Pearson’s $$\rho $$ ρ and Kendall’s rank correlation $$\tau $$ τ for the bivariate normal distribution, and since in the continuous case, Kendall’s $$\tau $$ τ coincides with Goodman and Kruskal’s $$\gamma $$ γ , the change of this association measure before and after discretization is worth studying. We consider several experimental settings obtained by varying the two sets of thresholds, or, equivalently, the marginal distributions of the final ordinal variables. This study, confirming previous findings, shows how the gamma coefficient is always larger in absolute value than Kendall’s rank correlation; this discrepancy lessens when the number of categories increases or, given the same number of categories, when using equally probable categories. Based on these results, a proposal is suggested to build a bivariate ordinal variable with assigned margins and Goodman and Kruskal’s $$\gamma $$ γ by ordinalizing a bivariate normal distribution. Illustrative examples employing artificial and real data are provided.

Funder

Italian Ministry of Education, University and Research

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Psychology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3