Modeling Evasive Response Bias in Randomized Response: Cheater Detection Versus Self-protective No-Saying

Author:

Sayed Khadiga H. A.ORCID,Cruyff Maarten J. L. F.,van der Heijden Peter G. M.

Abstract

AbstractRandomized response is an interview technique for sensitive questions designed to eliminate evasive response bias. Since this elimination is only partially successful, two models have been proposed for modeling evasive response bias: the cheater detection model for a design with two sub-samples with different randomization probabilities and the self-protective no sayers model for a design with multiple sensitive questions. This paper shows the correspondence between these models, and introduces models for the new, hybrid “ever/last year” design that account for self-protective no saying and cheating. The model for one set of ever/last year questions has a degree of freedom that can be used for the inclusion of a response bias parameter. Models with multiple degrees of freedom are introduced for extensions of the design with a third randomized response question and a second set of ever/last year questions. The models are illustrated with two surveys on doping use. We conclude with a discussion of the pros and cons of the ever/last year design and its potential for future research.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3