Author:
De Boeck Paul,DeKay Michael L.,Pek Jolynn
Abstract
AbstractWu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Bollen, K. A. (1989). Structural equations with latent variables. Hoboken: Wiley. https://doi.org/10.1002/9781118619179
2. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Hoboken: Wiley. https://doi.org/10.1002/9780470743386
3. Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799. https://doi.org/10.1080/01621459.1976.10480949
4. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Sage.
5. Cheung, M.W.-L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40–64. https://doi.org/10.1037/1082-989X.10.1.40