Accurate Confidence and Bayesian Interval Estimation for Non-centrality Parameters and Effect Size Indices

Author:

Kang KaidiORCID,Jones Megan T.,Armstrong Kristan,Avery Suzanne,McHugo Maureen,Heckers Stephan,Vandekar Simon

Abstract

AbstractReporting effect size index estimates with their confidence intervals (CIs) can be an excellent way to simultaneously communicate the strength and precision of the observed evidence. We recently proposed a robust effect size index (RESI) that is advantageous over common indices because it’s widely applicable to different types of data. Here, we use statistical theory and simulations to develop and evaluate RESI estimators and confidence/credible intervals that rely on different covariance estimators. Our results show (1) counter to intuition, the randomness of covariates reduces coverage for Chi-squared and F CIs; (2) when the variance of the estimators is estimated, the non-central Chi-squared and F CIs using the parametric and robust RESI estimators fail to cover the true effect size at the nominal level. Using the robust estimator along with the proposed nonparametric bootstrap or Bayesian (credible) intervals provides valid inference for the RESI, even when model assumptions may be violated. This work forms a unified effect size reporting procedure, such that effect sizes with confidence/credible intervals can be easily reported in an analysis of variance (ANOVA) table format.

Funder

National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Psychology

Reference34 articles.

1. Amaral, E. D., & Line, S. R. (2021). Current use of effect size or confidence interval analyses in clinical and biomedical research. Scientometrics, 126(11), 9133–9145.

2. American Psychological Association. (1994). Publication manual of the American psychological association (4th ed.). American Psychological Association.

3. American Psychological Association (2001). Publication manual of the American Psychological Association. American Psychological Association, Washington, DC, 5th edition.

4. American Psychological Association (2010). 6th edition Publication manual of the American Psychological Association., Washington, DC: American Psychological Association.

5. Armstrong, K., Avery, S., Blackford, J. U., Woodward, N., & Heckers, S. (2018). Impaired associative inference in the early stage of psychosis. Schizophrenia Research, 202, 86–90.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3