Machine learning algorithm predicts urethral stricture following transurethral prostate resection

Author:

Altıntaş EmreORCID,Şahin Ali,Babayev Huseyn,Gül Murat,Batur Ali Furkan,Kaynar Mehmet,Kılıç Özcan,Göktaş Serdar

Abstract

Abstract Purpose To predict the post transurethral prostate resection(TURP) urethral stricture probability by applying different machine learning algorithms using the data obtained from preoperative blood parameters. Methods A retrospective analysis of data from patients who underwent bipolar-TURP encompassing patient characteristics, preoperative routine blood test outcomes, and post-surgery uroflowmetry were used to develop and educate machine learning models. Various metrics, such as F1 score, model accuracy, negative predictive value, positive predictive value, sensitivity, specificity, Youden Index, ROC AUC value, and confidence interval for each model, were used to assess the predictive performance of machine learning models for urethral stricture development. Results A total of 109 patients’ data (55 patients without urethral stricture and 54 patients with urethral stricture) were included in the study after implementing strict inclusion and exclusion criteria. The preoperative Platelet Distribution Width, Mean Platelet Volume, Plateletcrit, Activated Partial Thromboplastin Time, and Prothrombin Time values were statistically meaningful between the two cohorts. After applying the data to the machine learning systems, the accuracy prediction scores for the diverse algorithms were as follows: decision trees (0.82), logistic regression (0.82), random forests (0.91), support vector machines (0.86), K-nearest neighbors (0.82), and naïve Bayes (0.77). Conclusion Our machine learning models’ accuracy in predicting the post-TURP urethral stricture probability has demonstrated significant success. Exploring prospective studies that integrate supplementary variables has the potential to enhance the precision and accuracy of machine learning models, consequently progressing their ability to predict post-TURP urethral stricture risk.

Funder

Selcuk University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3