Abstract
Abstract
Purpose
To predict the post transurethral prostate resection(TURP) urethral stricture probability by applying different machine learning algorithms using the data obtained from preoperative blood parameters.
Methods
A retrospective analysis of data from patients who underwent bipolar-TURP encompassing patient characteristics, preoperative routine blood test outcomes, and post-surgery uroflowmetry were used to develop and educate machine learning models. Various metrics, such as F1 score, model accuracy, negative predictive value, positive predictive value, sensitivity, specificity, Youden Index, ROC AUC value, and confidence interval for each model, were used to assess the predictive performance of machine learning models for urethral stricture development.
Results
A total of 109 patients’ data (55 patients without urethral stricture and 54 patients with urethral stricture) were included in the study after implementing strict inclusion and exclusion criteria. The preoperative Platelet Distribution Width, Mean Platelet Volume, Plateletcrit, Activated Partial Thromboplastin Time, and Prothrombin Time values were statistically meaningful between the two cohorts. After applying the data to the machine learning systems, the accuracy prediction scores for the diverse algorithms were as follows: decision trees (0.82), logistic regression (0.82), random forests (0.91), support vector machines (0.86), K-nearest neighbors (0.82), and naïve Bayes (0.77).
Conclusion
Our machine learning models’ accuracy in predicting the post-TURP urethral stricture probability has demonstrated significant success. Exploring prospective studies that integrate supplementary variables has the potential to enhance the precision and accuracy of machine learning models, consequently progressing their ability to predict post-TURP urethral stricture risk.
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Lepor H (2004) Pathophysiology, epidemiology, and natural history of benign prostatic hyperplasia. Rev Urol 6(Suppl 9):S3-s10
2. Cornu JN, Ahyai S, Bachmann A, de la Rosette J, Gilling P, Gratzke C et al (2015) A Systematic Review and Meta-analysis of Functional Outcomes and Complications Following Transurethral Procedures for Lower Urinary Tract Symptoms Resulting from Benign Prostatic Obstruction: An Update. Eur Urol 67(6):1066–1096. https://doi.org/10.1016/j.eururo.2014.06.017
3. Madersbacher S, Alivizatos G, Nordling J, Sanz CR, Emberton M, De la Rosette JJM (2004) EAU 2004 guidelines on assessment, therapy and follow-up of men with lower urinary tract symptoms suggestive of benign prostatic obstruction (BPH guidelines). Eur Urol 46(5):547–554
4. Cornu JN, Gacci M, Hashim H, Herrmann TRW, Malde S, Netsch C et al. (2023) Non-neurogenic Male LUTS EAU Guidelines
5. Rassweiler J, Teber D, Kuntz R, Hofmann R (2006) Complications of transurethral resection of the prostate (TURP)–incidence, management, and prevention. Eur Urol 50(5):969–979