Pilot study for bladder cancer detection with volatile organic compounds using ion mobility spectrometry: a novel urine-based approach

Author:

Heers HendrikORCID,Gut Josef Maximilian,Hofmann Rainer,Flegar Luka,Derigs Marcus,Huber Johannes,Baumbach Joerg Ingo,Koczulla Andreas Rembert,Boeselt Tobias

Abstract

Abstract Purpose Despite many efforts, no reliable urinary marker system has so far shown the potential to substitute cystoscopy. Measuring volatile organic compounds (VOCs) from urine is a promising alternative. VOCs are metabolic products which can be measured from the headspace of urine samples. Previous studies confirmed that the urine of bladder tumor patients has a different VOC profile than healthy controls. In this pilot study, the feasibility of discriminating VOCs from urine of bladder cancer patients from that of healthy control subjects was investigated. Aim of this study was to investigate whether VOC-based diagnosis of bladder cancer from urine samples is feasible using multicapillary column ion mobility spectrometry (MCC/IMS) and to identify potential molecular correlates to the relevant analytes. Methods Headspace measurements of urine samples of 30 patients with confirmed transitional cell carcinoma (TCC) and 30 healthy controls were performed using MCC/IMS. In the results of the measurements, peaks showing significant differences between both groups were identified and implemented into a decision tree with respect to achieve group separation. Molecular correlates were predicted using a pre-defined dataset. Results Eight peaks with significantly differing intensity were identified, 5 of which were highly significant. Using a six-step decision tree, MCC/IMS showed a sensitivity of 90% and specificity of 100% in group separation. Conclusion VOC-based detection of bladder cancer is feasible. MCC/IMS is a suitable method for urine-based diagnosis and should be further validated. The molecular characteristics and metabolic background of the analytes require further workup.

Funder

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3