Temperature assessment study of ex vivo holmium laser enucleation of the prostate model

Author:

Yilmaz Mehmet,Heuring Cäcilia Elisabeth Maria,Dressler Franz Friedrich,Suarez-Ibarrola Rodrigo,Gratzke Christian,Miernik ArkadiuszORCID,Hein Simon

Abstract

Abstract Purpose There isscarce evidence to date on how temperature develops during holmium laser enucleation of the prostate (HoLEP). We aimed to determine the potential heat generation during HoLEP under ex vivo conditions. Methods We developed two experimental setups. Firstly, we simulated HoLEP ex vivo using narrow-neck laboratory bottles mimicking enucleation cavities and a prostate resection trainer. Seven temperature probes were placed at different locations in the experimental setup, and the heat generation was measured separately during laser application. Secondly, we simulated high-frequency current-based coagulation of the vessels using a roller probe. Results We observed that the larger the enucleated cavity, the higher the temperature rises, regardless of the irrigation flow rate. The highest temperature difference with an irrigation flow was approximately + 4.5 K for a cavity measuring 100ccm and a 300 ml/min irrigation flow rate. The higher flow rate generates faster removal of the generated heat, thus cooling down the artificial cavity. Furthermore, the temperature differences at different irrigation flow rates (except at 0 ml/min) were consistently below 5 K. Within the resection trainer, the temperature increase with and without irrigation flow was approximately 0.5 K and 3.0 K, respectively. The mean depth of necrosis (1084 ± 176 µm) achieved by the roller probe was significantly greater when using 144 W energy. Conclusion Carefully adjusted irrigation and monitoring during HoLEP are crucial when evacuating the thermal energy generated during the procedure. We believe this study of ours provides evidence with the potential to facilitate clinical studies on patient safety.

Funder

Albert-Ludwigs-Universität Freiburg im Breisgau

Publisher

Springer Science and Business Media LLC

Subject

Urology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3