A self-supervised vision transformer to predict survival from histopathology in renal cell carcinoma

Author:

Wessels Frederik,Schmitt Max,Krieghoff-Henning Eva,Nientiedt Malin,Waldbillig Frank,Neuberger Manuel,Kriegmair Maximilian C.,Kowalewski Karl-Friedrich,Worst Thomas S.,Steeg Matthias,Popovic Zoran V.,Gaiser Timo,von Kalle Christof,Utikal Jochen S.,Fröhling Stefan,Michel Maurice S.,Nuhn Philipp,Brinker Titus J.ORCID

Abstract

AbstractPurposeTo develop and validate an interpretable deep learning model to predict overall and disease-specific survival (OS/DSS) in clear cell renal cell carcinoma (ccRCC).MethodsDigitised haematoxylin and eosin-stained slides from The Cancer Genome Atlas were used as a training set for a vision transformer (ViT) to extract image features with a self-supervised model called DINO (self-distillation with no labels). Extracted features were used in Cox regression models to prognosticate OS and DSS. Kaplan–Meier for univariable evaluation and Cox regression analyses for multivariable evaluation of the DINO-ViT risk groups were performed for prediction of OS and DSS. For validation, a cohort from a tertiary care centre was used.ResultsA significant risk stratification was achieved in univariable analysis for OS and DSS in the training (n = 443, log rank test,p < 0.01) and validation set (n = 266,p < 0.01). In multivariable analysis, including age, metastatic status, tumour size and grading, the DINO-ViT risk stratification was a significant predictor for OS (hazard ratio [HR] 3.03; 95%-confidence interval [95%-CI] 2.11–4.35;p < 0.01) and DSS (HR 4.90; 95%-CI 2.78–8.64;p < 0.01) in the training set but only for DSS in the validation set (HR 2.31; 95%-CI 1.15–4.65;p = 0.02). DINO-ViT visualisation showed that features were mainly extracted from nuclei, cytoplasm, and peritumoural stroma, demonstrating good interpretability.ConclusionThe DINO-ViT can identify high-risk patients using histological images of ccRCC. This model might improve individual risk-adapted renal cancer therapy in the future.

Funder

Bundesministerium für Gesundheit

Deutsches Krebsforschungszentrum (DKFZ)

Publisher

Springer Science and Business Media LLC

Subject

Urology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3