Using artificial intelligence to generate medical literature for urology patients: a comparison of three different large language models

Author:

Pompili David,Richa Yasmina,Collins Patrick,Richards Helen,Hennessey Derek BORCID

Abstract

Abstract Purpose Large language models (LLMs) are a form of artificial intelligence (AI) that uses deep learning techniques to understand, summarize and generate content. The potential benefits of LLMs in healthcare is predicted to be immense. The objective of this study was to examine the quality of patient information leaflets (PILs) produced by 3 LLMs on urological topics. Methods Prompts were created to generate PILs from 3 LLMs: ChatGPT-4, PaLM 2 (Google Bard) and Llama 2 (Meta) across four urology topics (circumcision, nephrectomy, overactive bladder syndrome, and transurethral resection of the prostate). PILs were evaluated using a quality assessment checklist. PIL readability was assessed by the Average Reading Level Consensus Calculator. Results PILs generated by PaLM 2 had the highest overall average quality score (3.58), followed by Llama 2 (3.34) and ChatGPT-4 (3.08). PaLM 2 generated PILs were of the highest quality in all topics except TURP and was the only LLM to include images. Medical inaccuracies were present in all generated content including instances of significant error. Readability analysis identified PaLM 2 generated PILs as the simplest (age 14–15 average reading level). Llama 2 PILs were the most difficult (age 16–17 average). Conclusion While LLMs can generate PILs that may help reduce healthcare professional workload, generated content requires clinician input for accuracy and inclusion of health literacy aids, such as images. LLM-generated PILs were above the average reading level for adults, necessitating improvement in LLM algorithms and/or prompt design. How satisfied patients are to LLM-generated PILs remains to be evaluated.

Funder

University College Cork

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3