Dissipationless Transfer of Visual Information From Retina to the Primary Visual Cortex in the Human Brain

Author:

Salari Vahid,Rahnama Majid,Tuszynski Jack A.

Abstract

Abstract Recently, the experiments on photosynthetic systems via “femto-second laser spectroscopy” methods have indicated that a “quantum-coherence” in the system causes a highly efficient transfer of energy to the “reaction center” (efficiency is approximately equal to 100%). A recent experiment on a single neuron has indicated that it can conduct light. Also, a re-emission of light from both photosynthetic systems and single neurons has been observed, which is called “delayed luminescence”. This can be supposed as a possibility for dissipationless transfer of visual information to the human brain. In addition, a long-range Fröhlich coherence in microtubules can be a candidate for efficient transfer of light through “noisy” and complex structures of the human brain. From an informational point of view it is a legitimate question to ask how human brain can receive subtle external quantum information of photons intact when photons are in a quantum superposition and pass through very noisy and complex pathways from the eye to the brain? Here, we propose a coherent model in which quantum states of photons can be rebuilt in the human brain.

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Cognitive Neuroscience,Clinical Neurology,Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3