Coronary artery calcium quantification technique using dual energy material decomposition: a simulation study

Author:

Black Dale,Singh Tejus,Molloi Sabee

Abstract

AbstractCoronary artery calcification is a significant predictor of cardiovascular disease, with current detection methods like Agatston scoring having limitations in sensitivity. This study aimed to evaluate the effectiveness of a novel CAC quantification method using dual-energy material decomposition, particularly its ability to detect low-density calcium and microcalcifications. A simulation study was conducted comparing the dual-energy material decomposition technique against the established Agatston scoring method and the newer volume fraction calcium mass technique. Detection accuracy and calcium mass measurement were the primary evaluation metrics. The dual-energy material decomposition technique demonstrated fewer false negatives than both Agatston scoring and volume fraction calcium mass, indicating higher sensitivity. In low-density phantom measurements, material decomposition resulted in only 7.41% false-negative (CAC = 0) measurements compared to 83.95% for Agatston scoring. For high-density phantoms, false negatives were removed (0.0%) compared to 20.99% in Agatston scoring. The dual-energy material decomposition technique presents a more sensitive and reliable method for CAC quantification.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3