Training and assessing convolutional neural network performance in automatic vascular segmentation using Ga-68 DOTATATE PET/CT

Author:

Parry R.,Wright K.,Bellinge J. W.,Ebert M. A.,Rowshanfarzad P.,Francis R. J.,Schultz C. J.

Abstract

AbstractTo evaluate a convolutional neural network’s performance (nnU-Net) in the assessment of vascular contours, calcification and PET tracer activity using Ga-68 DOTATATE PET/CT. Patients who underwent Ga-68 DOTATATE PET/CT imaging over a 12-month period for neuroendocrine investigation were included. Manual cardiac and aortic segmentations were performed by an experienced observer. Scans were randomly allocated in ratio 64:16:20 for training, validation and testing of the nnU-Net model. PET tracer uptake and calcium scoring were compared between segmentation methods and different observers. 116 patients (53.5% female) with a median age of 64.5 years (range 23–79) were included. There were strong, positive correlations between all segmentations (mostly r > 0.98). There were no significant differences between manual and AI segmentation of SUVmean for global cardiac (mean ± SD 0.71 ± 0.22 vs. 0.71 ± 0.22; mean diff 0.001 ± 0.008, p > 0.05), ascending aorta (mean ± SD 0.44 ± 0.14 vs. 0.44 ± 0.14; mean diff 0.002 ± 0.01, p > 0.05), aortic arch (mean ± SD 0.44 ± 0.10 vs. 0.43 ± 0.10; mean diff 0.008 ± 0.16, p > 0.05) and descending aorta (mean ± SD < 0.001; 0.58 ± 0.12 vs. 0.57 ± 0.12; mean diff 0.01 ± 0.03, p > 0.05) contours. There was excellent agreement between the majority of manual and AI segmentation measures (r ≥ 0.80) and in all vascular contour calcium scores. Compared with the manual segmentation approach, the CNN required a significantly lower workflow time. AI segmentation of vascular contours using nnU-Net resulted in very similar measures of PET tracer uptake and vascular calcification when compared to an experienced observer and significantly reduced workflow time.

Funder

Department of Health, Government of Western Australia

Department of Education, Australian Government

University of Western Australia

Royal Perth Hospital Medical Research Foundation

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462

2. Parry R, Majeed K, Pixley F et al (2022) Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeac167

3. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

4. Wright K. (2022) Automatic segmentation of coronary arteries and aortic substructures in 18F-NaF PET/CT images using convolutional neural networks [Unpublished MA Dissertation]. University of Western Australia.

5. Council NHaMR. National statement on ethical conduct in human research (updated). 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3