COPD: pulmonary vascular volume associated with cardiac structure and function

Author:

Duus Lisa Steen,Vesterlev Ditte,Nielsen Anne Bjerg,Lassen Mats Højbjerg,Sivapalan Pradeesh,Ulrik Charlotte Suppli,Lapperre Therese,Browatzki Andrea,Estépar Rubén San José,Nardelli Pietro,Jensen Jens-Ulrik Staehr,Estépar Raúl San José,Biering-Sørensen Tor

Abstract

Abstract Background Early recognition of cardiac dysfunction in patients with chronic obstructive pulmonary disease (COPD) may prevent future cardiac impairment and improve prognosis. Quantitative assessment of subsegmental and segmental vessel volume by Computed Tomographic (CT) imaging can provide a surrogate of pulmonary vascular remodeling. We aimed to examine the relationship between lung segmental- and subsegmental vessel volume, and echocardiographic measures of cardiac structure and function in patients with COPD. Methods We studied 205 participants with COPD, included in a large cohort study of cardiovascular disease in COPD patients. Participants had an available CT scan and echocardiogram. Artificial intelligence (AI) algorithms calculated the subsegmental vessel fraction as the vascular volume in vessels below 10 mm2 in cross-sectional area, indexed to total intrapulmonary vessel volume. Linear regressions were conducted, and standardized ß-coefficients were calculated. Scatterplots were created to visualize the continuous correlations between the vessel fractions and echocardiographic parameters. Results We found that lower subsegmental vessel fraction and higher segmental vessel volume were correlated with higher left ventricular (LV) mass, LV diastolic dysfunction, and inferior vena cava (IVC) dilatation. Subsegmental vessel fraction was correlated with right ventricular (RV) remodeling, while segmental vessel fraction was correlated with higher pulmonary pressure. Measures of LV mass and right atrial pressure displayed the strongest correlations with pulmonary vasculature measures. Conclusion Pulmonary vascular remodeling in patients with COPD, may negatively affect cardiac structure and function. AI-identified remodeling in pulmonary vasculature may provide a tool for early identification of COPD patients at higher risk for cardiac impairment.

Funder

Royal Library, Copenhagen University Library

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3