Quality assessment of cardiac magnetic resonance myocardial scar imaging prior to ventricular arrhythmia ablation

Author:

Shah Rushil,Sharma Apurva,Assis Fabrizio,De Vasconcellos Henrique Doria,Alugubelli Navya,Pandey Pallavi,Akhtar Tauseef,Gasperetti Alessio,Zhou Shijie,Halperin Henry,Zimmerman Stefan L.,Tandri Harikrishna,Kolandaivelu Aravindan

Abstract

AbstractHigh-resolution scar characterization using late gadolinium enhancement cardiac magnetic resonance imaging (LGE-CMR) is useful for guiding ventricular arrhythmia (VA) treatment. However, imaging study quality may be degraded by breath-holding difficulties, arrhythmias, and implantable cardioverter-defibrillators (ICDs). We evaluated the effect of image quality on left ventricle (LV) base to apex scar interpretation in pre-VA ablation LGE-CMR. 43 consecutive patients referred for VA ablation underwent gradient-recalled-echo LGE-CMR. In ICD patients (n = 24), wide-bandwidth inversion-recovery suppressed ICD artifacts. In non-ICD patients, single-shot steady-state free-precession LGE-CMR could also be performed to reduce respiratory motion/arrhythmia artifacts. Study quality was assessed for adequate/limited scar interpretation due to cardiac/respiratory motion artifacts, ICD-related artifacts, and image contrast. 28% of non-ICD patients had studies where image quality limited scar interpretation in at least one image compared to 71% of ICD patient studies (p = 0.012). A median of five image slices had limited quality per ICD patient study, compared to 0 images per non-ICD patient study. Poorer quality in ICD patients was largely due to motion-related artifacts (54% ICD vs 6% non-ICD studies, p = 0.001) as well as ICD-related image artifacts (25% of studies). In VA ablation patients with ICDs, conventional CMR protocols frequently have image slices with limited scar interpretation, which can limit whole-heart scar assessment. Motion artifacts contribute to suboptimal image quality, particularly in ICD patients. Improved methods for motion and ICD artifact suppression may better delineate high-resolution LGE scar features of interest for guiding VA ablation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3