Usefulness of an artificial neural network for a beginner to achieve similar interpretations to an expert when examining myocardial perfusion images

Author:

Chiba A.ORCID,Kudo T.,Ideguchi R.,Altay M.,Koga S.,Yonekura T.,Tsuneto A.,Morikawa M.,Ikeda S.,Kawano H.,Koide Y.,Uetani M.,Maemura K.

Abstract

AbstractThis study examined whether using an artificial neural network (ANN) helps beginners in diagnostic cardiac imaging to achieve similar results to experts when interpreting stress myocardial perfusion imaging (MPI). One hundred and thirty-eight patients underwent stress MPI with Tc-labeled agents. An expert and a beginner interpreted stress/rest MPI with or without the ANN and the results were compared. The myocardium was divided into 5 regions (the apex; septum; anterior; lateral, and inferior regions), and the defect score of myocardial blood flow was evaluated from 0 to 4, and SSS, SRS, and SDS were calculated. The ANN effect, defined as the difference in each of these scores between with and without the ANN, was calculated to investigate the influence of ANN on the interpreters' performance. We classified 2 groups (insignificant perfusion group and significant perfusion group) and compared them. In the same way, classified 2 groups (insignificant ischemia group and significant ischemia group) and compared them. Besides, we classified 2 groups (normal vessels group and multi-vessels group) and compared them. The ANN effect was smaller for the expert than for the beginner. Besides, the ANN effect for insignificant perfusion group, insignificant ischemia group and multi-vessels group were smaller for the expert than for the beginner. On the other hand, the ANN effect for significant perfusion group, significant ischemia group and normal vessels group were no significant. When interpreting MPI, beginners may achieve similar results to experts by using an ANN. Thus, interpreting MPI with ANN may be useful for beginners. Furthermore, when beginners interpret insignificant perfusion group, insignificant ischemia group and multi-vessel group, beginners may achieve similar results to experts by using an ANN.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3