Combining perfusion and angiography with a low-dose cardiac CT technique: a preliminary investigation in a swine model
-
Published:2021-01-27
Issue:5
Volume:37
Page:1767-1779
-
ISSN:1569-5794
-
Container-title:The International Journal of Cardiovascular Imaging
-
language:en
-
Short-container-title:Int J Cardiovasc Imaging
Author:
Hubbard LoganORCID, Malkasian Shant, Zhao Yixiao, Abbona Pablo, Molloi SabeeORCID
Abstract
AbstractMorphological and physiological assessment of coronary artery disease (CAD) is necessary for proper stratification of CAD risk. The objective was to evaluate a low-dose cardiac CT technique that combines morphological and physiological assessment of CAD. The low-dose technique was evaluated in twelve swine, where three of the twelve had coronary balloon stenosis. The technique consisted of rest perfusion measurement combined with angiography followed by stress perfusion measurement, where the ratio of stress to rest was used to derive coronary flow reserve (CFR). The technique only required two volume scans for perfusion measurement in mL/min/g; hence, four volume scans were acquired in total; two for rest with angiography and two for stress. All rest, stress, and CFR measurements were compared to a previously validated reference technique that employed 20 consecutive volume scans for rest perfusion measurement combined with angiography, and stress perfusion measurement, respectively. The 32 cm diameter volumetric CT dose index ($${\text{CTDI}}_{\text{vol}}^{32}$$
CTDI
vol
32
) and size-specific dose estimate (SSDE) of the low-dose technique were also recorded. All low-dose perfusion measurements (PLOW) in mL/min/g were related to reference perfusion measurements (PREF) through regression by PLOW = 1.04 PREF − 0.08 (r = 0.94, RMSE = 0.32 mL/min/g). The $${\text{CTDI}}_{\text{vol}}^{32}$$
CTDI
vol
32
and SSDE of the low-dose cardiac CT technique were 8.05 mGy and 12.80 mGy respectively, corresponding to an estimated effective dose and size-specific effective dose of 1.8 and 2.87 mSv, respectively. Combined morphological and physiological assessment of coronary artery disease is feasible using a low-dose cardiac CT technique.
Funder
American Heart Association National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging
Reference39 articles.
1. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N, Möbius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001. https://doi.org/10.1056/NEJMoa1205361 2. Chen MY, Rochitte CE, Arbab-Zadeh A, Dewey M, George RT, Miller JM, Niinuma H, Yoshioka K, Kitagawa K, Sakuma H, Laham R, Vavere AL, Cerci RJ, Mehra VC, Nomura C, Kofoed KF, Jinzaki M, Kuribayashi S, Scholte AJ, Laule M, Tan SY, Hoe J, Paul N, Rybicki FJ, Brinker JA, Arai AE, Matheson MB, Cox C, Clouse ME, Di Carli MF, Lima JAC (2017) Prognostic value of combined CT angiography and myocardial perfusion imaging versus invasive coronary angiography and nuclear stress perfusion imaging in the prediction of major adverse cardiovascular events: the CORE320 multicenter study. Radiology 284(1):55–65. https://doi.org/10.1148/radiol.2017161565 3. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, Blankstein R, Dorbala S, Sitek A, Pencina MJ, Di Carli MF (2011) Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 124(20):2215–2224. https://doi.org/10.1161/circulationaha.111.050427 4. Jablonowski R, Wilson MW, Do L, Hetts SW, Saeed M (2015) Multidetector CT measurement of myocardial extracellular volume in acute patchy and contiguous infarction: validation with microscopic measurement. Radiology 274(2):370–378. https://doi.org/10.1148/radiol.14140131 5. Danad I, Szymonifka J, Schulman-Marcus J, Min JK (2016) Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J 17(8):836–844. https://doi.org/10.1093/ehjci/jew044
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|