Zebra finches increase social behavior in traffic noise: Implications for urban songbirds

Author:

Hawkins Carly E.ORCID,Pantel Jelena H.,Palia Sophia T.,Folks Christine C.,Swaddle John P.

Abstract

AbstractTraffic noise is a pervasive pollutant that affects wildlife at individual and group levels through mechanisms such as disrupting communication, affecting antipredator strategy, and/or changing how they use space within a habitat. Urbanization is expanding rapidly—few places remain untouched by anthropogenic noise disturbance—so understanding the implications of noise on wildlife behavior is paramount to conservation efforts. We asked whether traffic noise could change space use and social network metrics in flocks of captive birds. Specifically, we quantified the effects of playbacks of traffic noise on individual sociality (weighted degree, number of social partners weighted by the frequency of interactions with those social partners) and flock clustering (global clustering coefficient, connectivity of neighbors). In this study, we recorded social interactions and space use of flocks of captive zebra finches (Taeniopygia guttata) before, during, and after an experimental traffic noise introduction in two treatments: high- and lower-amplitude noise. Our results demonstrated that individual sociality and flock clustering increased in response to the noise introduction in both high-amplitude and low-amplitude treatments. Additionally, birds in the high-amplitude treatment spent more time in the room with active playback during noise playback whereas birds in the lower-amplitude treatment decreased time spent in the room closest to the high-amplitude treatment. Increased social behavior in response to traffic noise could influence disease transmission, social learning, and mating dynamics. We suggest future studies explore the mechanisms driving increased social behavior in traffic noise, such as perceived predation risk, vigilance, and cross-sensory interference.

Funder

Virginia Space Grant Consortium

Coastal Virginia Wildlife Observatory

Williamsburg Bird Club

College of Arts and Sciences, College of William and Mary

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3