Abstract
AbstractWe report on an all-solid-state light source for nanosecond (ns) laser pulses, with broad tunability in the mid-infrared, spectral bandwidth close to the Fourier transform limit, and pulse energy in the mJ regime. To this end, we extend a tunable, continuous wave (cw) singly resonant optical parametric oscillator by an optical parametric pre-amplifier with a periodically poled lithium niobate crystal and a power amplifier stage with two bulk lithium niobate crystals. We demonstrate pulse energies beyond 1 mJ in a tuning range between 3.3 and 3.8 $$\upmu \mathrm {m}$$
μ
m
center wavelength, with options for even larger output pulse energy and tuning range. The total conversion efficiency in the power amplifier reaches 20%. From measurements of absorption spectroscopy, we determine a very narrow linewidth of 108 MHz (full width at half maximum, FWHM), which is only a factor of 1.4 above the Fourier limit. We demonstrate the applicability and versatility of the laser system for nonlinear spectroscopy by resonantly enhanced third harmonic generation and sum frequency mixing in a gas sample of HCl molecules.
Funder
Deutsche Forschungsgemeinschaft
Technische Universität Darmstadt
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献