Viscosity effects and confined cochlea-like geometry in laser-induced cavitation dynamics

Author:

Lengert Liza,Lohmann Hinnerk,Johannsmeier Sonja,Ripken Tammo,Maier Hannes,Heisterkamp Alexander,Kalies Stefan

Abstract

AbstractOn the path to an optoacoustic hearing implant for stimulation of residual hearing, one possibility for tone generation in liquids is the concatenation of acoustic click events, which can be realized i. a. by the acoustic transients that accompany an optical breakdown. The application of a viscous gel is helpful in this context, as this results in an attenuation of the distortion of tone quality caused by higher harmonic components. To further understand the underlying cavitation bubble dynamics both in the viscous gel and in a confined volume that is dimensioned similarly to the human cochlea, a numerical model built in OpenFOAM was adapted and compared to additional experiments. Experimentally, the acoustic transients were generated by optical breakdown by nanosecond laser pulses with a pulse duration of 0.7 ns and a wavelength of 1064 nm. The pulses were focused on a viscous gel inside a water container. The pressure transients were measured by a needle hydrophone. The comparison of the bubble dynamics in different viscosities between the model and the experiment shows that, except for high viscosities, the experimental observations could be modeled by the simulation. We assume that the maximum size of the cavitation bubble strongly decreases with increasing viscosity, which can be used for high-frequency attenuation as reported in our previous research. In conclusion, this study aims at an application-oriented realization of the numerical cavitation bubble dynamics model to understand the experimental findings on the pathway to an optoacoustic hearing implant.

Funder

Cluster of Excellence Hearing4all

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3