Abstract
AbstractA one-dimensional premixed ethylene–air flame is investigated regarding the presence of various combustion intermediates and products relevant for the formation of carbonaceous particles for various equivalence ratios and spatial positions using in situ UV–Vis absorption spectroscopy. A laser driven light source in combination with a fast spectrometer allow to record absorption spectra at a high rate required for practical combustion devices. The approach is coupled with a least squares regression procedure using a database of several absorbing species in the flame. To account for the high temperature flame conditions, the absorption spectra are convoluted by a simplified Maxwell–Boltzmann distribution model. While the approach is based on several assumptions and a verification requires future detailed intercomparison with other techniques, a first semi-quantitative evaluation can be obtained. This novel approach opens a potential route to the in situ measurement of the evolution of polycyclic aromatic hydrocarbons (PAHs) in flames.
Funder
Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献